
università degli studi di cagliari

Facoltà di Scienze

Corso di Laurea Magistrale in Informatica

A general-purpose decentralized system based on the Bitcoin
block-chain

Supervisor M.Sc. Candidate

Prof. Massimo Bartoletti Davide Gessa

Matr. N. 49196

ACADEMIC YEAR 2014/2015

Abstract

Today, many Internet services are implemented as centralized software, where the service,
usually owned by a single corporation, acts as a trusted third party that handles user
interactions.
The centralized approach relies on the assumption that users completely trust the central
authority; this could become a single point of failure for the entire system, and so the
central authority must be carefully designed.
In the past few years the decentralized model has gained popularity thanks to projects like
Bitcoin or Ethereum. In this model, a service is implemented as a peer-to-peer network,
where each node holds a public immutable data structure that maintains the historical
data of all client transactions. So, if a node of the decentralized system is not available
anymore, any other running node can take its place without losing of data and without
interrupting the service.
We design and develop a general-purpose decentralized system based on the Bitcoin block-
chain; our system is extensible through a plugin infrastructure that allows to implement
arbitrary decentralized applications. To validate the general applicability of our system,
we develop four case studies, also including a decentralized implementation of an existing
contract-oriented middleware based on timed session types.

3

4

Contents

Contents i

1 Introduction 1
1.1 Decentralized Applications . 1
1.2 Contributions . 3
1.3 Structure of the thesis . 4

I Background 5

2 Contracts and timed session types 7
2.1 Overview on contracts . 7
2.2 Timed Session Types . 7

2.2.1 Semantics of Timed Session Types 7
2.2.2 Dual construction . 9
2.2.3 Runtime monitoring . 11

II General-purpose decentralized system 15

3 Extending the bitcoin block-chain 17
3.1 Distributed Hash Table . 17
3.2 Message meta-data . 18

4 Decentralized system 19
4.1 Chain and DHT modules . 20
4.2 PluginManager and Plugins modules . 21
4.3 API module . 21

5 Client library 23
5.1 ConsensusManager module . 24

5.1.1 Reputation system . 24
5.2 Wallet module . 25

6 Attack scenery 27
6.1 Malicious system . 27

6.1.1 System broadcasts modi�ed data 27
6.1.2 System deletes data received from clients 27
6.1.3 System sends wrong data to clients 28

i

6.2 Unreachable system . 28

7 Case study plugins 29
7.1 Hello World plugin . 29

7.1.1 Plugin source code walk-through 29
7.1.2 Example usage . 32

7.2 BlockStore plugin . 34
7.2.1 Example usage . 34

7.3 FIFO message queue plugin . 35
7.3.1 Example usage . 35

7.4 Timed Session Types plugin . 37
7.4.1 Messages . 37
7.4.2 Database . 38
7.4.3 API . 38
7.4.4 Client library . 39
7.4.5 Example usage . 39
7.4.6 Contracts explorer . 41

8 Conclusions and future works 43
8.1 Source code . 43
8.2 Related works . 43
8.3 Future works . 44

List of Figures 47

List of Listings 49

Bibliography 51

ii

Chapter 1

Introduction

Today, many internet services are often implemented as centralized software, where the
service, usually owned by a single corporation, acts as a trusted third party that handles
user interactions. Some examples of the centralized paradigm are a �nancial institution
that processes user transactions, an auction marketplace or an email service.

The centralized approach relies on the assumption that users completely trust the cen-
tral authority, which must provide correct information and must be always available. This
could become a single point of failure for the entire system, and so the central authority
must be carefully designed. Furthermore, a centralized system could act maliciously, or
it could act illegally. Another problem is that a centralized service could be made inac-
cessible by a censorship action or by an attacker.

1.1 Decentralized Applications

In the past few years the decentralized model has gained popularity thanks to projects like
Bitcoin [19] or Ethereum [12]. In this model, a service is implemented as a peer-to-peer
network, where each node acts at the same time as a service provider and as a service
client. Instead of delegating crucial operations to a trusted authority, a decentralized
system is based on cryptographic proofs (like e.g. the proof of work system of Bitcoin
[19]). Another feature of this model is that each node holds a public immutable data
structure that maintains the historical data of all client transactions. So, if a node of the
decentralized system is not available anymore, any other running node can take its place
without losing data, and without interrupting the service.

A notable example of a decentralized application is Bitcoin [19], a peer-to-peer elec-
tronic cash system. Bitcoin proposes a �nancial system where all transactions are stored
in a public ledger, called block-chain; the block-chain is updated with new blocks of trans-
actions, using a distributed consensus process called mining, that enforces a chronological
order in the block-chain, protects the neutrality of the network, and allows di�erent com-
puters to agree on the state of the system. To be con�rmed, transactions must be packed
in a block that �ts given cryptographic rules, veri�ed by the network. These rules prevent
previous blocks from being modi�ed, since a change would invalidate all the following
blocks. Mining also creates the equivalent of a �competitive lottery�, that prevents any

1

individual from easily adding new blocks consecutively in the block chain. This way, no
one can control what is included in the block-chain, or replace parts of the block chain to
roll back their own spends.

The idea of the Bitcoin block-chain has been used as the foundation of several de-
centralized applications [8, 20, 18, 9, 12]. For instance, Namecoin [8] uses transactions
to create a registration mechanism for domains. Namecoin's �agship use case is the
censorship-resistant top level domain .bit, which is functionally similar to .com or .net
domains, but independent from ICANN, the main governing body for domain names.
CounterParty [18] is a decentralized application for creating peer-to-peer �nancial prod-
ucts on the Bitcoin block-chain; its protocol is primarily designed to create virtual assets,
and to issue dividends. The CounterParty protocol de�nes a set of rules for embedding
messages inside block-chain transactions, forcing all Bitcoin nodes to download Counter-
Party messages even if they do not need these data. Blockstore [9] is a key-value data
storage built on top of the Bitcoin block-chain; the block-chain is still used, but only for
storing meta-data. Full data are stored in a distributed hash table (DHT); this implies
that message size is unlimited, and only the interested nodes download the full data.

While the projects outlined before focus on speci�c application domains, Ethereum [12]
allows for developing general-purpose decentralized applications (dapp) using a Turing-
complete language. To enable the execution of these user-created applications, the Ethereum
daemon includes a virtual machine. After a dapp is submitted the Ethereum block-chain,
it cannot be stopped by anyone, it is not alterable by a third party, and its code is exe-
cuted in Ethereum nodes. A dapp is activated and executed by the decentralized virtual
machine, every time that a user sends a transaction that contains a call to the dapp.
The transaction must include a certain amount of electronic cash, to pay all nodes for its
execution.

Despite its generality, Ethereum has some drawbacks: a dapp must be written using
one of the Ethereum languages, and it cannot integrate external software or API easily,
because the code execution must provide the same result on every node. Another limita-
tion is that a node cannot restrict the set of dapp it runs. After a dapp is deployed in the
Ethereum network, it cannot be modi�ed anymore, because each dapp is associated with
its hash value in the block-chain: the only way to update it is to broadcast a new dapp
with the modi�ed code, but the old version remains usable.

Note that, since nodes are distributed over an open network, they could be run by
attackers who try to subvert legitimate computations. In Ethereum, clients can only
protect themselves against this kind of attacks either by locally running a node, or by
connecting to a trusted node.

A further disadvantage of Ethereum is that clients need to run the block-chain dae-
mon besides the application. This is quite impractical, especially when the computing
device has limited resources (like e.g. power, bandwidth, disk space). Indeed, today the
Ethereum block-chain uses already about 1 GB of disk space and needs about 2 hours for
synching.

2

1.2 Contributions

In this thesis we design and develop a general-purpose decentralized system based on the
Bitcoin block-chain. Users interact with the system by sending cryptographic signed mes-
sages to the block-chain. This guarantees that messages cannot be deleted or modi�ed by
malicious users; furthermore, users can obtain a proof of existence for the messages sent
to the block-chain (so to prevent e.g. their repudiation). To overcome the limitation to 40
bytes per transaction imposed by the Bitcoin protocol, in our system we store messages
in a data structure which combines the block-chain with a DHT.

The proposed system is extensible through a plugin infrastructure that allows to im-
plement arbitrary decentralized applications. Our system saves in the block-chain only
the messages exchanged by clients; so, we depart from Ethereum, which uses the block-
chain also to save the state of computations. This design choice is crucial, since it allows
us to overcome the drawbacks of Ethereum outlined before. In practice, each node in our
system can choose which plugin to execute; further, we do not impose constraints on the
programming language used to develop plugins, which can invoke legacy applications or
external services in case they need to.

Our system exploits a consensus mechanism to protect clients in case some nodes are
governed by attackers. Speci�cally, when a client queries a plugin, the query is replicated
and sent to a set of distinct nodes; the actual result is obtained by taking the majority of
the received answers. This mechanism is completely transparent to client programmers,
which exploit the functionalities of plugins via a set of APIs. A client application does
not need to run the block-chain daemon anymore, because the consensus mechanism is
implemented directly in the client library.

To validate the general applicability of our system, we develop four case studies. Each
of them includes a plugin, the corresponding client library, and some usage examples. The
�rst case study is a simple HelloWorld plugin, where clients can save their names and get
previously saved names (with the number of their occurrences). The main purpose of this
toy example is to present a walk-through of how a plugin and its client library are written.
The second case study implements a key-value decentralized database, similar to the one
provided by Blockstore [9]. The third case study is a FIFO message oriented middleware
which acts as a decentralized broker for messages. With this plugin clients can produce
or consume messages from queues, in a way similar to the RabbitMQ middleware [6]. The
last case study is far more complex, as it implements a decentralized contract-oriented
middleware based on timed session types presented in [10]. The middleware uses contracts
to allow interactions between distributed services; it handles the composition of services,
monitoring their interactions to detect contract violations.

All produced software, including the node daemon with all case studies, the client
library and the DHT implementation, are available as open-source projects on [13, 14, 15].

3

1.3 Structure of the thesis

The thesis is composed of 8 chapters, including this introduction; Part I examines the
background behind this thesis, focusing on contracts and timed session types in Chapter
2. Part II explains how our decentralized system works; Chapter 3 shows an overview of
how the Bitcoin block-chain is extended for data storage of messages. Then, Chapter 4
focuses on the system architecture, detailing the functions of each module. In chapter 5,
the client library that allows to write client applications using this system is proposed. In
Chapter 6 a list of attack sceneries are enumerated, describing how these situations are
handled, and which are the e�ects both in a centralized and in our decentralized system.
In Chapter 7 we validate the general applicability of our system, exploiting it to write the
above-mentioned four case studies, including the contract-oriented middleware based on
timed session types (Section 7.4). An overview of conclusions, related and future works
are �nally given in Chapter 8.

4

Part I

Background

5

Chapter 2

Contracts and timed session types

2.1 Overview on contracts

In computer science, contracts are interacting processes with an explicit notion of obli-
gations and objectives, and are being developed to regulate the communication between
distributed components, hereafter called participants (each one with possibly con�icting
individual goals and not necessarily honest), belonging to potentially distinct systems and
infrastructures, and under the control of di�erent providers.

Over the last few years several formal representations for contracts have been described
in literature, such as event structures and session types. In this chapter we provide a brief
summary of a session types variant that introduces timing capabilities.

2.2 Timed Session Types

In this section we recall from [10] some useful notions about the theory of timed session
types.

2.2.1 Semantics of Timed Session Types

We use clock valuations, which associate each clock with its value. The state of the
interaction between two TSTs is described by a con�guration (p, ν) | (q, η), where the
clock valuations ν and η record (keeping the same pace) the time of the clocks in p and
q, respectively. The dynamics of the interaction is formalised as a transition relation
between con�gurations (De�nition 2.2.4). This relation describes all and only the correct
interactions: for instance, we do not allow time passing to make unsatis�able all the
guards in an internal choice, since doing so would prevent a participant from respecting
her protocol.

We denote with V = C → R≥0 the set of clock valuations (ranged over by ν, η, . . .),
and with ν0 the valuation mapping each clock to zero. We write ν + δ for the valuation
which increases ν by δ, i.e., (ν + δ)(t) = ν(t) + δ for all t ∈ C. For a set R ⊆ C, we write
ν [R] for the reset of the clocks in R, i.e.,

ν [R](t) =

{
0 if t ∈ R
ν(t) otherwise

7

(!a{g,R}. p+p′, ν)
τ−→ ([!a{g,R}] p, ν) if ν ∈ JgK [+]

([!a{g,R}] p, ν)
!a−→ (p, ν [R]) [!]

(?a{g,R}. p + p′, ν)
?a−→ (p, ν [R]) if ν ∈ JgK [?]

(p, ν)
δ−→ (p, ν + δ) if δ > 0 ∧ ν + δ ∈ rdy(p) [Del]

(p, ν)
τ−→ (p′, ν ′)

(p, ν) | (q, η)
τ−→ (p′, ν ′) | (q, η)

[S-+]
(p, ν)

δ−→ (p, ν ′) (q, η)
δ−→ (q, η ′)

(p, ν) | (q, η)
δ−→ (p, ν ′) | (q, η ′)

[S-Del]

(p, ν)
!a−−→ (p′, ν ′) (q, η)

?a−−→ (q ′, η ′)

(p, ν) | (q, η)
τ−→ (p′, ν ′) | (q ′, η ′)

[S-τ]

Figure 2.1: Semantics of timed session types (symmetric rules omitted).

De�nition 2.2.1 (Semantics of guards) For all guards g, we de�ne the set of clock
valuations JgK inductively as follows, where ◦ ∈ {<,≤,=,≥, >}:

JgK =

V if g = true

V \ Jg ′K if g = ¬g ′

Jg1K ∩ Jg2K if g = g1 ∧ g2

{ν | ν(t) ◦ d} if g = t ◦ d
{ν | ν(t)− ν(t′) ◦ d} if g = t − t′ ◦ d

Before de�ning the semantics of TSTs, we recall from [11] some basic operations on
sets of clock valuations (ranged over by K,K′ , . . . ⊆ V).

De�nition 2.2.2 (Past and inverse reset) For all sets K of clock valuations, the set
of clock valuations ↓ K (the past of K) and K[T]−1 (the inverse reset of K) are de�ned
as:

↓ K = {ν | ∃δ ≥ 0 : ν + δ ∈ K} K[T]−1 = {ν | ν [T] ∈ K}

De�nition 2.2.3 For all TSTs p, we de�ne the set of clock valuations rdy(p) as:

rdy(p) =

↓
⋃

JgiK if p =
∑

i∈I!ai{gi, Ri} . pi
V if p = & · · · or p = 1

∅ otherwise

De�nition 2.2.4 (Semantics of TSTs) A con�guration is a term of the form (p, ν) |
(q, η), where p, q are TSTs extended with committed choices [!a{g,R}] p. The semantics
of TSTs is de�ned as a labelled relation −→ over con�gurations, whose labels are either
silent actions τ , delays δ, or branch labels. As usual, we denote with −→∗ the re�exive and
transitive closure of the relation −→.

8

We now comment the rules in Figure 2.1. The �rst four rules are auxiliary, as they
describe the behaviour of a TST in isolation. Rule [+] allows a TST to commit to the
branch !a of her internal choice, provided that the corresponding guard is satis�ed in
the clock valuation ν . This results in the term [!a{g,R}] p, which represents the fact
that the endpoint has committed to branch !a in a speci�c time instant: actually, it can
only �re !a through rule [!] (which also resets the clocks in R), while time cannot pass.
Rule [?] allows an external choice to �re any of its input actions whose guard is satis�ed.
Rule [Del] allows time to pass; this is always possible for external choices and success term,
while for an internal choice we require that at least one of the guards remains satis�able;
this is obtained through the function rdy in Figure 2.1. The last three rules deal with
con�gurations of two TSTs. Rule [S-+] allows a TSTs to commit in an internal choice.
Rule [S-τ] is the standard synchronisation rule à la CCS; note that B is assumed to read
a message as soon as it is sent, so A never blocks on internal choices. Rule [S-Del] allows
time to pass, equally for both endpoints.

Example 2.2.5 Let p = !a+!b{t > 2}, let q = ?b{t > 5}, and consider the following
computations:

(p, ν0) | (q, η0)
7−→ τ−→ ([!b{t > 2}] , ν0 + 7) | (q, η0 + 7)

τ−→ (1, ν0 + 7) | (1, η0 + 7) (2.1)

(p, ν0) | (q, η0)
δ−→ τ−→ ([!a] , ν0 + δ) | (q, η0 + δ) (2.2)

(p, ν0) | (q, η0)
3−→ τ−→ ([!b{t > 2}] , ν0 + 3) | (q, η0 + 3) (2.3)

The computation in (2.1) reaches success, while the other two computations reach the
deadlock state. In (2.2), p commits to the choice !a after some delay δ; at this point, time
cannot pass (because the leftmost endpoint is a committed choice), and no synchronisation
is possible (because the other endpoint is not o�ering ?a). In (2.3), p commits to !b after
3 time units; here, the rightmost endpoint would o�er ?b, � but not in the time chosen
by the leftmost endpoint. Note that, were we allowing time to pass in committed choices,
then we would have obtained e.g. that (!b{t > 2}, ν0) | (q, η0) never reaches deadlock �
contradicting our intuition that these endpoints should not be considered compliant.

De�nition 2.2.6 (Compliance [10]) We say that (p, ν) | (q, η) is deadlock whenever
(i) it is not the case that both p and q are 1, and (ii) there is no δ such that (p, ν + δ) |
(q, η + δ)

τ−→. We then write (p, ν) ./ (q, η) whenever the labels of p and q belong to the
same context, and:

(p, ν) | (q, η) −→∗ (p′, ν ′) | (q ′, η ′) implies (p′, ν ′) | (q ′, η ′) not deadlock

We say that p and q are compliant whenever (p, ν0) ./ (q, η0) (in short, p ./ q).

2.2.2 Dual construction

The dual construction makes sense only for those TSTs for which a compliant exists. To
this purpose, we de�ne a procedure (more precisely, a kind system) which computes the
set of clock valuations K (called kinds) such that p admits a compliant TST in all ν ∈ K.

9

Γ ` 1 : V [T-1]

Γ ` pi : Ki for i ∈ I
Γ `&i∈I?ai{gi, T i} . pi :

⋃
i∈I ↓

(
JgiK ∩ Ki[T i]−1

) [T-&]

Γ ` pi : Ki for i ∈ I
Γ `

∑
i∈I!ai{gi, T i} . pi :

(⋃
i∈I ↓ JgiK

)
\
(⋃

i∈I ↓ (JgiK \ Ki[T i]−1)
) [T-+]

Γ, X : K ` X : K [T-Var]

∃K,K′ : Γ{K/X} ` p : K′
Γ ` recX. p :

⋃
{K | Γ{K/X} ` p : K′ ∧ K ⊆ K′} [T-Rec]

Figure 2.2: Kind system for TSTs.

De�nition 2.2.7 (Kind system) Kind judgements Γ ` p : K are de�ned in Figure 2.2.
where Γ is a partial function which associates kinds to recursion variables.

Rule [T-1] says that the success TST 1 admits compliant in every ν : indeed, 1 is
compliant with itself. The kind of an exernal choice is the union of the kinds of its
branches (rule [T-&]), where the kind of a branch is the past of those clock valuations
which satisfy both the guard and, after the reset, the kind of their continuation. Internal
choices are dealt with by rule [T-+], which computes the di�erence between the union of
the past of the guards and a set of error clock valuations. The error clock valuations
are those which can satisfy a guard but not the kind of its continuation. Rule [T-Var]

is standard. Rule [T-Rec] looks for a kind which is preserved by unfolding of recursion
(hence a �xed point). In order to obtain completeness of the kind system we need the
greatest �xed point.

The following theorem states that every TST is kindable. We stress the fact that being
kindable does not imply admitting a compliant. This holds if and only if ν0 belongs to
the kind (see Theorems 2.2.11 and 2.2.12).

Theorem 2.2.8 For all closed p, there exists some K such that ` p : K.

The following theorem states that the problem of determining the kind of a TST
is decidable. This might seem surprising, as the cardinality of kinds is 22ℵ0 . However,
the kinds constructed by our inference rules can always be represented syntactically by
guards [16].

Theorem 2.2.9 Kind inference is decidable.

De�nition 2.2.10 (Dual of a TST [10]) For all kindable p kindable and kinding en-
vironments Γ, we de�ne the TST coΓ(p) (in short, co(p) when Γ = ∅)

coΓ(1) = 1
coΓ(&i∈I?ai{gi, T i} . pi) =

∑
i∈I!ai{gi ∧ Ki[T i]−1, T i} . coΓ(pi) if Γ ` pi : Ki

coΓ

(∑
i∈I!ai{gi, T i} . pi

)
= &i∈I?ai{gi, T i} . coΓ(pi)

coΓ(X) = X if Γ(X) de�ned

coΓ(recX. p) = recX. coΓ{K/X}(p) if Γ ` recX. p : K

10

The following theorem states the soundness of the kind system: is particular, if the
clock valuation ν0 belongs to the kind of p, then p admits a compliant.

Theorem 2.2.11 (Soundness) If ` p : K and ν ∈ K, then (p, ν) ./ (co(p) , ν).

The following theorem states the kind system is also complete: in particular, if p
admits a compliant, then the clock valuation ν0 belongs to the kind of p.

Theorem 2.2.12 (Completeness) If ` p : K and ∃q, η. (p, ν) ./ (q, η), then ν ∈ K.

2.2.3 Runtime monitoring

We now de�ne the semantics of the runtime monitor of TSTs, which is the one used in the
premises of rules [Send] and [Recv]. Note that the semantics in Figure 2.1 cannot be directly
exploited to de�ne such a runtime monitor, for two reasons. First, the synchronisation
rule is symmetric and synchronous, while the middleware assumes an asymmetry between
internal and external choices and an asynchronous semantics. Second, the semantics
in Figure 2.1 does not have transitions (either messages or delays) not allowed by the
TSTs, while the monitoring semantics must also consider illegal moves attempted by
participants.

The monitoring semantics is de�ned on two levels. The �rst level, speci�ed by the
relation −→ (which overloads the transition relation used in Section 2.2.1) deals with
the case of honest participants; however, unlike the semantics in Section 2.2.1, here we
decouple the action of sending from that of receiving. More precisely, if A has an internal
choice and B has an external choice, then we postulate that A must move �rst, by doing
one of the outputs in her choice, and then B must be ready to do the corresponding input.
The second level, called monitoring semantics and speci�ed by the relation −→→, builds
upon the �rst one to allow for synchronisation and delay. Additionally, the monitoring
semantics de�nes transitions for actions not accepted by the �rst level, e.g. unexpected
input/output actions. In these cases, the monitoring semantics assigns the blame to the
culpable participant, by setting its state to 0.

De�nition 2.2.13 (Monitoring semantics of TSTs) Monitoring con�gurations γ, γ′, . . .
are terms of the form P ‖Q, P and Q are triples (p, c, ν), where p is either a TST or
0, and c is a sequence of output labels (possibly empty). The transition relations −→ and
−→→ over monitoring con�gurations, with labels λ, λ′, . . . ∈ ({A,B} × L) ∪ R≥0, is de�ned
in Figure 2.3.

In the rules in Figure 2.3, we always assume that the leftmost TST is governed by A,
while the rightmost one is governed by B. In rule [M-+], A has an internal choice, and she
can �re one of her outputs !a, provided that the guard g is satis�ed. When this happens,
the message !a is written to the bu�er, and the clocks in R are reset. In rule [M-&], B
can enable an input ?a in an external choice; this is permitted when the guard g of the
selected branch is satis�ed. Rules [M-Del] and [M-DelFail] allow time to pass, making A
culpable when she de�nitively disables all the branches in an internal choice. The last
four rules specify the runtime monitor. Rule [M-Sync] allows two triples to synchronise;
this makes the bu�er of A grow (!a is enqueued, according to rule [M-+]), while B just
consumes the input pre�x ?a. Rule [M-SyncDel] lets some time δ to pass, provided that

11

(!a{g,R}. p + p′, c, ν)
!a−→ (p, c · !a, ν [R]) if ν ∈ JgK [M-+]

(?a{g,R}. p & p′, c, ν)
?a−→ (p, c, ν [R]) if ν ∈ JgK [M-&]

ν + δ ∈ rdy(p)

(p, c, ν)
δ−→ (p, c, ν + δ)

[M-Del]

ν + δ 6∈ rdy(p)

(p, c, ν)
δ−→ (0, c, ν + δ)

[M-DelFail]

(p, c, ν)
!a−→ (p′, c′, ν ′) (q, d, η)

?a−→ (q ′, d′, η ′)

(p, c, ν) ‖ (q, d, η)
A:!a−−→→ (p′, c′, ν ′) ‖ (q ′, d′, η ′)

[M-Sync]

(p, c, ν)
δ−→ (p′, c′, ν ′) (q, d, η)

δ−→ (q ′, d′, η ′)

(p, c, ν) ‖ (q, d, η)
δ−→→ (p′, c′, ν ′) ‖ (q ′, d′, η ′)

[M-SyncDel]

(p, !a · c, ν) ‖ (q, d, η)
B:?a−−→→ (p, c, ν) ‖ (q, d, η) [M-Read]

(p, c, ν) 6 !a−→
(p, c, ν) ‖ (q, d, η)

A:!a−−→→ (0, c, ν) ‖ (q, d, η)
[M-Fail]

Figure 2.3: Monitoring semantics (symmetric rules omitted).

the delay is the same for both triples. Rule [M-Read] allows B to read a message in the
bu�er; note that the state of the recipient is not updated, since the input pre�x was
already consumed by rule [M-Sync]. Finally, rule [M-Fail] is used when A attempts to do
an action not permitted by −→: this makes the monitor evolve to a con�guration where A
is culpable (denoted by the term 0).

Formally, the runtime monitor can be seen as a deterministic automaton, which reads
a timed trace (a sequence of actions and time delays) and it reaches a unique state γ,
which can be inspected to �nd which of the two participants (if any) is culpable.

De�nition 2.2.14 (Duties & culpability) Let γ = (p, c, ν) ‖ (q, d, η). We say that A
is culpable in γ i� p = 0. We say that A is on duty in γ if (i) A is not culpable in γ,
and (ii) either p is an internal choice, or d is not empty.

When both participants behave honestly, i.e., they never take [*Fail*] moves, the moni-
toring semantics preserves compliance. This can be proved similarly to Theorem 9 in [10].

Example 2.2.15 Let p = !a{2 < t < 4} be the TST of participant A, and let q =
?a{2 < t < 5} + ?b{2 < t < 5} be that of B. Participant A declares that she will send a
between 2 and 4 time unit (abbr. t.u.), while B declares that he is willing to receive a or
b if they are sent within 2 and 5 t.u. We have that p ./ q. Let γ0 = (p, [], ν0) ‖ (q, [], ν0).

A correct interaction is given by the timed trace η = 〈1.2, A : !a, B : ?a〉. Indeed, γ0
η−→→

(1, [], ν0) ‖ (1, [], ν0). On the contrary, things may go wrong in the following two cases:

(i) a participant does something not permitted. E.g., if A �res a at 1 t.u., by [M-FailA]:

γ0
1−→→ A:!a−−→→ (0, [], ν0 + 1) ‖ (q, [], η0 + 1), where A is culpable.

12

(ii) a participant avoids to do something she is supposed to do. E.g., assume that after

6 t.u., A has not yet �red a. By rule [M-SyncDel], we obtain γ0
6−→→ (0, [], ν0 +

6) ‖ (q, [], η0 + 6), where A is culpable.

13

Part II

General-purpose decentralized system

15

Chapter 3

Extending the bitcoin block-chain

One of the key features of this system is the storage of messages. In this Chapter we
provide some reasonable motivations to avoid the usage of the block-chain for storing all
the message data. Therefore, we compose the block-chain with a distributed hash table,
exploiting the block-chain only for message meta-data.

This guarantees that messages cannot be deleted or modi�ed by malicious users; fur-
thermore, users can obtain a proof of existence for the messages sent to the block-chain
(so to prevent e.g. their repudiation). To achieve these requirements, we exploited the
block-chain technology introduced by Satoshi Nakamoto in Bitcoin [19] using it as an
immutable data-structure.

Even if bitcoin-like block-chains are primarily intended to handle digital cash transac-
tions, the protocol allows to include extra data in transactions using an OPRETURN script.
The maximum amount of additional data in a transaction cannot exceed a limit of 40
bytes (or 80 bytes in newest protocol versions); this limit will avoid spam transactions in
the block-chain, since transaction data are stored in all bitcoin nodes. To overcome this
limit, we use the block-chain only to save message meta-data, while we use a distributed
hash table to store the full data. The complete data model scheme with block-chain and
DHT is illustrated in Figure 3.1.

3.1 Distributed Hash Table

A distributed hash table (DHT) is a class of a decentralized and distributed system that
provides a service similar to an hash table: (key, value) pairs are stored in a DHT, and
any participating node can e�ciently retrieve the value associated with a given key. Re-
sponsibility for maintaining the mapping from keys to values is distributed among the
nodes, in such a way that a change in the set of participants causes a minimal amount
of disruption. This allows a DHT to scale to extremely large numbers of nodes and to
handle continual node arrivals, departures, and failures.

In our prototype, we have developed a Kademlia distributed hash table, the one used
by softwares like eMule [3] and bittorrent [2]. All stored messages are encoded in JSON
format.

17

Figure 3.1: Data model with DHT and Block-chain

3.2 Message meta-data

As we said earlier, a transaction has only a small amount of bytes for storing other data,
and we use these bytes for meta-data storing. To ensure that all messages meta-data will
be stored in a transaction, we choose to use the oldest limit of 40 bytes for backward
compatibility; the bytes allocation of the proposed protocol is detailed in Figure 3.2. A
single message meta-data includes various �elds, like a magic �ag for message recognition,
the hash of the message, plugin code and addressing information for retriving the correct
message from the DHT.

Figure 3.2: Format of OPRETURN message meta-data

The addressing information should be unique in the entire system; the ID of the block-
chain transaction that contains meta-data is used as unique ID for the message. An hash
of the DHT data is also included to avoid data modi�cation performed by attackers.
Another useful information is the sender of the message; this is achieved easily because
the transaction is signed with the private key of the sender of the bitcoin transaction. The
plugin informations are used by the plugin system to handle di�erent types of messages.

18

Chapter 4

Decentralized system

In this Chapter we explain how the decentralized system works, focusing on the node
daemon software and its modules.

The decentralized system is composed of a network of inter-connected nodes, where
each node has the same capabilities of the others. A generic node is connected to the
block-chain for storing meta-data and to the DHT for broadcasting and retrieving message
data. The nodes o�er services to client applications through an API interface; usually a
client application is connected to more than one node, using data received from multiple
nodes to establish which is the correct value through a majority mechanism.

Figure 4.1: Example node network with clients connected

The node daemon is built on top of the bitcoin-core daemon (or similar); it commu-
nicates with the bitcoin-core through the standard json-rpc interface. The daemon polls
the bitcoin-core for new blocks using the Chain module described in Section 4.1; if a
new block is inserted in the block-chain, the Chain module retrieves all the transactions

19

included in the block and starts to scan for a new message. If a new message is found in a
transaction identi�ed by a transaction ID, the DHT is queried for the key correspondent
of the transaction ID; after the message data has been received, it is checked for validity
(hash, signer and size match). If the message is valid, it is passed to the PluginManager
module described in Section 4.2, that �nds a suitable plugin (four case study plugins are
provided in Chapter 7).

Figure 4.2: Node software modules

A client application that uses this system exploits the API described in Section 4.3
to perform queries and to prepare and broadcast messages. When a client application
needs to broadcast a message, the client follows the �ow illustrated in Figure 4.3: �rst, it
sends the raw message to the node that will create an unsigned transaction for the given
message; then the message is signed by the client. Finally, the node will broadcast the
transaction to the block-chain, and the message data to the DHT.

4.1 Chain and DHT modules

The Chain module polls the bitcoin-core RPC to detect the presence of a new block; when
a new block appears, the module retrieves the new block and scans it for transactions that
contain messages. All found messages are checked for validity (protocol version and plu-
gin availability); if all these information are OK, it calls the DHT module with a �ndKey
query using the transaction ID as key. If the key is present in the DHT, the message
data is downloaded and the message hash is compared with the meta-data hash; if they
match, the message is marked as valid, and it is passed to the PluginManager module

20

Figure 4.3: Client - Node message �ow

for processing. If the key is not present in the DHT, the system tries again the �ndKey
query until a timeout occurs.

4.2 PluginManager and Plugins modules

The node daemon also implements an abstraction layer, the PluginManager; through this
module, it is possible to de�ne arbitrary decentralized systems by de�ning a plugin script.
When a new message arrives to the PluginManager, it selects the correct Plugin using the
plugin code and the type �elds in message meta-data. If a suitable plugin is present, the
new message is passed to the corresponding Plugin.handleMessage() method.

In Chapter 7 four plugin are proposed, including a walk-through that explains how a
plugin is written.

4.3 API module

To use the services o�ered, the system provides an API module that uses the JSON-RPC
protocol; the API calls provide basic plugin-independent functions. Other API calls can
be added using plugins, as explained in Section 4.2.

The plugin-independent API calls are:
• info (): returns generic node information
• broadcast (data): broadcasts a chain transaction
• net.peers (): returns the list of connected peers
• net.connections (): returns the number of connections

21

Chapter 5

Client library

In this Chapter we give details on how the client library works and how it connects to
multiple node daemons with the purpose of enabling the consensus mechanism.

The decentralized client library is more complex than a centralized version. As we
told before, each application using this system will connect to more than one node dae-
mon in the aim to enable the majority mechanism for data validation. The client library
is also integrated with a bitcoin wallet so that messages could be signed with a private key.

The plugin-agnostic library does not implement any Plugin; four examples of plugins
with their client libraries are shown in Chapter 7.

The client library is divided in 2 core modules, the ConsensusManager and theWallet.
The library itself is useless without a plugin module; each plugin implements a custom
module that handles plugin related API calls. For example, as illustrated in Figure 5.1,
the module ContractManager acts as client interface for the TST plugin (Section 7.4).

Figure 5.1: Client library modules with TST module (ContractManager)

23

5.1 ConsensusManager module

The ConsensusManager module maintains a list of active nodes and o�ers the abstraction
to apply the majority mechanism in this list. It also provides the option to integrate a
reputation system with di�erent behaviors.

Every time that a plugin speci�c module needs to receive an information from the
nodes, it calls the ConsensusManager.JsonConsensusCall() method; this call sends the
information request to all available nodes, or to a part of them (depending by the policy
used) and waits for replies. After that, if all replies are equal, the module accepts the
value as true value; if some nodes send a di�erent value, the chosen value is the one
provided by the majority of nodes as true if the reputation system is disabled, or the one
with the best score otherwise.

Figure 5.2: Example where a client is connected with 3 nodes; one of them sends wrong
data

5.1.1 Reputation system

To protect client applications from malicious behavior of nodes, the ConsensusManager
module has the possibility to integrate a reputation system that gives a di�erent score to
each connected node. There are many facts that should be analyzed before implementing
a reputation system; for that purpose, we referenced to the article A survey of attack and
defense techniques for reputation systems [17].

In this system a reputation value is assigned for each node connected to the client
application; the reputation value for a node starts from a default value, and is updated
deterministically: it will increase with a positive feedback and it will decrease with a
negative feedback. When a reputation value for a node reaches a low value, the node is
removed from the consensus group.

Another important aspect is to de�ne how feed-backs are assigned; in the client library
the only aspect that can be converted to a feedback for a node reputation, is how many
times a node falls outside the consensus set when performing a JsonConsensusCall():
if the node falls in the majority, we have a positive feedback, a negative feedback oth-

24

erwise; the inclusion of positive feed-backs, introduces the self-promoting attack. Even
if the possibility of this attack exists, both the behaviors (only negative feed-backs and
both negative and positive feed-backs) are integrated in the prototype; however, the self-
promoting attack is mitigated introducing an upper bound for the reputation value.

Since there is no evidence that a node falls or not in a majority set during a call, a
secure dissemination mechanism could not be implemented easily; therefore we decided
to use an asymmetric mode where feed-backs are not disseminated and where each client
calculates the reputation of nodes which is connected to, by using only the feed-backs
produced during the execution of the application, and these data are not disseminated.
This implies that many of known attacks are not possible with this reputation system;
prevented attacks are the slandering and the Sybil attacks. The only possible attack of
the reputation system and of the consensus manager in general, is an orchestrated attack
where the majority of nodes acts as malicious sending the same wrong value (more details
about possible attack scenery are given in Chapter 6).

When reputation is enabled, nodes' reputation are used instead of the majority criteria;
ConsensusManager will choose as the returned value the group of nodes that has the
best reputation sum. The ConsensusManager implements three types of policies for the
reputation system:
• Only negative feedback: the reputation value of a node can only decrease
• Both positive and negative feed-backs: the reputation value could increase or de-
crease
• No reputation: the reputation system is disabled

5.2 Wallet module

The Wallet module provides methods to handle a Bitcoin wallet. Private-public key pair
can be loaded from a �le or be randomly generated. After the creation/load of the pair,
the module can produce and sign bitcoin transactions with a custom payload (messages).
The Wallet also provides methods to retrieve spendable outputs and the balance of an
account.

25

Chapter 6

Attack scenery

The use of the decentralized system makes some situations that are dangerous in a cen-
tralized system harmless. We found two classes of attacks; in one, the system (or a set of
nodes in the decentralized system) acts as malicious, in the other, the system (or a set of
nodes in the decentralized system) is unreachable for a generic reason. For each scenery,
we explain how the situation is handled by a centralized system and by our decentralized
system.

6.1 Malicious system

It could happen that a system acts maliciously; the clients in a centralized software expect
that the server is a trusted authority and always acts as honest. This is not true; the
network could be compromised, the server software could be modi�ed with malicious code,
or the client simply does not trust the authority.

6.1.1 System broadcasts modi�ed data

In this scenery, the system broadcasts modi�ed data; for example in the TST case study
(Section 7.4) when a client tells a contract, the system can save/broadcast a di�erent
contract.

Centralized In the centralized system, the client has no way to detect if the system is
broadcasting modi�ed data.

Decentralized In the decentralized system, this problem is solved exploiting the block-
chain signature mechanism; all messages are signed with the client private key. The node
cannot modify the message meta-data because it has not the client private key; if it
modi�es message data in the DHT, other nodes will not accept the message because of
an hash mismatch. If the client after an interval does not �nd its message in other nodes,
the client automatically broadcasts the same message by using another node.

6.1.2 System deletes data received from clients

In this scenery, the system deletes data received from clients.

27

Centralized In the centralized system, the client has no way to detect if the system is
deleting data.

Decentralized In the decentralized system, the client library periodically asks to other
nodes if the message is securely saved in the block-chain. If after a timeout the message
is not present, the client library tries to broadcast again using a di�erent node.

6.1.3 System sends wrong data to clients

In this scenery, the system sends wrong data to clients.

Centralized In the centralized system, the client has no way to detect if the system is
sending wrong data to clients.

Decentralized In the decentralized system, when a client needs some data, it asks to
all nodes which it is connected to; through the majority mechanism, the client chooses
the most shared data as valid (or the data with the best score, if the reputation system is
enabled). Wrong data are accepted as valid by a client, only if the majority of connected
nodes sends the same wrong value.

6.2 Unreachable system

In this scenery, the system is unreachable for various reasons: the most common ones are
DOS attacks, hardware faults, malicious code injected, server overload.

Centralized In the centralized system, this scenery leads to the system unavailability;
all clients cannot connect to the server. Even in short time unreachability, a side e�ect of
this scenery is for example in the TST case study a player that become guilty in a session
because he could not perform an action.

Decentralized In the decentralized system, the unavailability of a single node do not
compromise the entire system because a client is usually connected to more than one node.
If the number of unreachable nodes becomes greater than one, the decentralized system
could be unreachable by some clients that are connected only to unreachable nodes; if
this situation happens, the client can always get new available nodes.

28

Chapter 7

Case study plugins

To validate the general applicability of our system, we develop four case studies, which
include a plugin, the corresponding client library, and some usage examples.

The �rst case study is a simple HelloWorld plugin, where clients can save their name
and get previously saved names with their occurrences; the main purpose of this toy
example is to present a walk-through of how a plugin and its client library is written. The
second case study implements in our system a key-value decentralized database, similar
to the one provided by Blockstore [9]. The third case study is a FIFO message oriented
middleware which acts as a decentralized broker for messages; with this plugin clients
can produce or consume messages from queues, in a way similar from the middleware
RabbitMQ [6]. The last case study is more complex, and implements a decentralized
contract oriented middleware based on timed session types.

7.1 Hello World plugin

The HelloWorldPlugin is a simpli�ed example of a Plugin. This Plugin allows to send
only one type of message, the hello message, that contains a name (a string); when a node
�nds a new hello message, the new name is saved in the node private database: if the
name already exists, the occurrences of that name are updated in its database. The client
library allows a client application to create hello messages and to retrieve information
about previously sent names. Even if this plugin is useless, it explains how to compose
a plugin (through a source code walk-through 7.1.1), and how di�erent parts of a plugin
interact.

7.1.1 Plugin source code walk-through

In this section the plugin source code is explained. The plugin is divided in two main
parts: the �rst (Listings 1, 2, 3 and 4) runs in the software of each node, the second (List-
ing 5) runs in the client library and it is exploited to write applications for this plugin.

29

Node part

At the beginning, in Listing 1 we de�ne the protocol for the new plugin, and the data
structure for supported messages. At line 1-4 we de�ne a set of constants like the unique
plugin code, and the code for each type of message. Then we extend the Message class,
de�ning a constructor for hello message (lines 8-13) and we override the function toJSON()
for the serialization of a new message.

1 class HelloWorldProto:

2 PLUGIN_CODE = 0x05

3 METHOD_HELLO = 0x01

4 METHOD_LIST = [METHOD_HELLO]

5

6

7 class HelloWorldMessage (Message):

8 def hello (name):

9 m = HelloWorldMessage ()

10 m.Name = name

11 m.PluginCode = HelloWorldProto.PLUGIN_CODE

12 m.Method = HelloWorldProto.METHOD_HELLO

13 return m

14

15 def toJSON (self):

16 data = super (HelloWorldMessage, self).toJSON ()

17 if self.Method == HelloWorldProto.METHOD_HELLO:

18 data["name"] = self.Name

19 else:

20 return None

21 return data

Listing 1: HelloWorld plugin source code: Messages

The next step is to write the core of our plugin, extending the class plugin.VM as
shown in Listing 2; in this class we should de�ne all the methods that interact with the
plugin state, including query and data insertion. In our case we need only one function
for querying inserted names, and another one to insert a new name in the database. For
each plugin, the PluginManager automatically creates a new internal database for storing
the plugin state.

30

1 class HelloWorldVM (plugin.VM):

2 def __init__ (self, chain, database):

3 super (HelloWorldVM, self).__init__ (chain, database)

4 self.database.init ("names", {})

5

6 def addName (self, name):

7 name = name.lower ()

8 names = self.database.get ("names")

9 if name in names:

10 names[name] += 1

11 else:

12 names[name] = 1

13 self.database.set ("names", names)

14

15 def getNames (self):

16 return self.database.get ("names")

Listing 2: HelloWorld plugin source code: VM

To use the functionality of the plugin from an external application, the plugin should
o�er a set of API calls; this task is done in Listing 3 extending the plugin.API class,
creating a dict object which contains new API calls (lines 4-10). Then we write our API
methods, in this example there are only two:

• hello (name): creates an hello message with the passed name, returning the output
script and other broadcast information
• getNames (): gets a key-value list of existing names with their frequency, invoking
the VM.getNames method

1 class HelloWorldAPI (plugin.API):

2 def __init__ (self, vm, dht, api):

3 self.api = api

4 rpcmethods = {}

5 rpcmethods["get_names"] = { "call": self.method_get_names,

6 "help": {"args": [], "return": {}} }

7 rpcmethods["hello"] = { "call": self.method_hello,

8 "help": {"args": ["name"], "return": {}} }

9 errors = {}

10 super (HelloWorldAPI, self).__init__(vm, dht, rpcmethods, errors)

11

12 def method_get_names (self):

13 return (self.vm.getNames ())

14

15 def method_hello (self, name):

16 message = HelloWorldMessage.hello (name)

17 [datahash, outscript, tempid] = message.toOutputScript (self.dht)

18 r = { "outscript": outscript, "datahash": datahash,

19 "tempid": tempid,

20 "fee": Protocol.estimateFee (

21 self.vm.getChainCode (), 100 * len (name)) }

22 return r

Listing 3: HelloWorld plugin source code: API

31

Finally we de�ne the plugin in Listing 4 by extending the class plugin.Plugin; at lines
3-8 we bind all the previously created classes, also telling the PluginManager how to
handle each message through the handleMessage method in line 10-14.

1 class HelloWorldPlugin (plugin.Plugin):

2 def __init__ (self, chain, db, dht, apimaster):

3 self.VM = HelloWorldVM (chain, db)

4 super (HelloWorldPlugin, self).__init__("HW",

5 HelloWorldProto.PLUGIN_CODE,

6 HelloWorldProto.METHOD_LIST,

7 chain, db, dht)

8 self.API = HelloWorldAPI (self.VM, self.DHT, apimaster)

9

10 def handleMessage (self, m):

11 if m.Method == HelloWorldProto.METHOD_HELLO:

12 logger.pluginfo ("Found new message %s: hello %s", m.Hash,

13 m.Data["name"])

14 self.VM.addName (m.Data["name"])

Listing 4: HelloWorld plugin source code: Plugin

Library

To use this plugin as a library for client applications, we should de�ne a library class that
binds the API calls described in Listing 3 inside a library; we do this by extending the
PluginManager (Listing 5), adding support for our new methods by binding the API calls
hw.hello and hw.get_names. The sendName method only creates a new message that
contains the given name, and broadcasts it into the network; the other method getNames
performs a consensus query to all nodes, and returns the result.

1 from libcontractvm import Wallet, ConsensusManager, PluginManager

2

3 class HelloWorldManager (PluginManager.PluginManager):

4 def __init__ (self, consensusManager, wallet = None):

5 super (HelloWorldManager, self).__init__(consensusManager, wallet)

6

7 def sendName (self, name):

8 cid = self._produce_transaction ('hw.hello', [name])

9 return cid

10

11 def getNames (self):

12 cc = self.consensusManager.jsonConsensusCall ('hw.get_names', [])

13 return cc['result']

Listing 5: HelloWorld plugin library source code

7.1.2 Example usage

Listing 6 shows an hello world application of the HelloWorld plugin. At lines 3-6 the
ConsensusManager is created and initialized with a static set of nodes; then, in lines 8-9, a
Wallet object is created using a local instance of bitcoin-core with private keys saved in the

32

�le app.wallet. At line 11 the HelloWorldManager is created using the ConsensusManager
and Wallet objects created before. At line 13-14 the script asks to the user for a name
and sends it to the network. Then in line 15, the list of all broadcasted names is retrieved.
Finally the scripts will display a di�erent message if the name has already been submitted
or not.

1 from libcontractvm import *

2

3 consMan = ConsensusManager.ConsensusManager ()

4 consMan.addNode ("http://192.168.1.102:9095")

5 consMan.addNode ("http://192.168.1.105:9095")

6 consMan.addNode ("http://192.168.1.107:9095")

7

8 wallet = WalletNode.WalletNode (url="http://test:testpass@localhost:18332",

9 wallet_file="app.wallet")

10

11 helloworldMan = HelloWorldManager.HelloWorldManager (consMan, wallet=wallet)

12

13 yname = input ('Insert a name to greet: ')

14 helloworldMan.sendName (yname)

15 names = helloworldMan.getNames ()

16

17 if yname in names:

18 print ("Your name has already greeted in", names[yname], "other messages")

19 else:

20 print ("Oh cool, you're the first that said hello to", yname)

Listing 6: Example usage of the client library for HelloWorld plugin

33

7.2 BlockStore plugin

The next example is BlockStorePlugin, a plugin that implements a key-value storage simi-
lar to BlockStore [9]. This Plugin allows to send only one type of message, the set message,
that contains a key-value pair; when a node �nds a new set message, it saves the key-value
pair in a private database. Clients can set new keys and retrieve already set keys that
have been stored in a decentralized way.

The plugin o�ers two API calls:
• set (key, value): set the key with the given value
• get (key): returns the value assigned to the given key

7.2.1 Example usage

Listing 7 shows an hello world application of the BlockStore plugin. At lines 3-6 the
ConsensusManager is created and initialized with a static set of nodes; then, in lines 8-9, a
Wallet object is created using a local instance of bitcoin-core with private keys saved in the
�le app.wallet. At line 11 the BlockStoreManager is created using the ConsensusManager
and Wallet objects created before. At line 13-15 the script asks to the user for a key-value
pair and sends it to the network. Then in line 17-18, another key is asked and retrieved
to the client application and displayed.

1 from libcontractvm import *

2

3 consMan = ConsensusManager.ConsensusManager ()

4 consMan.addNode ("http://192.168.1.102:9095")

5 consMan.addNode ("http://192.168.1.105:9095")

6 consMan.addNode ("http://192.168.1.107:9095")

7

8 wallet = WalletNode.WalletNode (url="http://test:testpass@localhost:18332",

9 wallet_file="app.wallet")

10

11 bsMan = BlockStoreManager.BlockStoreManager (consMan, wallet=wallet)

12

13 ykey = input ('Insert a key to set: ')

14 yvalue = input ('Insert a value to set: ')

15 bsMan.set (ykey, yvalue)

16

17 ykey = input ('Insert a key to get: ')

18 value = bsMan.get (ykey)

19 print (ykey,'=',value)

Listing 7: Example usage of the client library for BlockStore plugin

34

7.3 FIFO message queue plugin

The FIFO plugin implements a message oriented middleware which acts as a decentralized
broker for messages; with this plugin clients can produce or consume messages from
queues, in a way similar from the middleware RabbitMQ [6].

The plugin o�ers two API calls to publish and get messages into/from a queue:
• publish_message (queue, body): append a new message in the speci�ed message
queue
• get_messages (queue, last): get last messages from the queue

7.3.1 Example usage

This example is composed of two scripts; the producer script (Listing 8) produces new
messages in the message queue, while the consumer script (Listing 9) consumes new
messages.

Both listings show an hello world application of the FIFO plugin. At lines 3-6 the
ConsensusManager is created and initialized with a static set of nodes; then, in lines 8-9,
a Wallet object is created using a local instance of bitcoin-core with private keys saved in
the �le app.wallet. At line 11 the FIFOManager is created by using the ConsensusManager
and Wallet objects created before.

In Listing 8 at lines 13-15, the script asks for a new message body and submits it
into the queue helloqueue. In Listing 9 at lines 13-14 a new consumer function consume
is de�ned: this function only prints new messages; at lines 16-17 FIFOManager.consume
binds the previously de�ned function as the handler for new messages on helloqueue then
it starts the consumer loop. When a new message arrives in the queue, consume is called
with the body of the new message.

1 from libcontractvm import *

2

3 consMan = ConsensusManager.ConsensusManager ()

4 consMan.addNode ("http://192.168.1.102:9095")

5 consMan.addNode ("http://192.168.1.105:9095")

6 consMan.addNode ("http://192.168.1.107:9095")

7

8 wallet = WalletNode.WalletNode (url="http://test:testpass@localhost:18332",

9 wallet_file="app.wallet")

10

11 fifoMan = FIFOManager.FIFOManager (consMan, wallet=wallet)

12

13 body = input ('Insert a body for the message: ')

14 fifoMan.publish ('helloqueue', body)

15 print ('Done.')

Listing 8: Example usage of the client library for FIFO plugin: message producer

35

1 from libcontractvm import *

2

3 consMan = ConsensusManager.ConsensusManager ()

4 consMan.addNode ("http://192.168.1.102:9095")

5 consMan.addNode ("http://192.168.1.105:9095")

6 consMan.addNode ("http://192.168.1.107:9095")

7

8 wallet = WalletNode.WalletNode (url="http://test:testpass@localhost:18332",

9 wallet_file="app.wallet")

10

11 fifoMan = FIFOManager.FIFOManager (consMan, wallet=wallet)

12

13 def consume (queue, body):

14 print ('[x] Received:', body)

15

16 fifoMan.consume ('helloqueue', consume)

17 fifoMan.startConsumer ()

Listing 9: Example usage of the client library for FIFO plugin: message consumer

36

7.4 Timed Session Types plugin

In the �rst part of this master thesis we showed the theoretical background required for
understanding the contract model based on timed session types (Chapter 2). In this case
study we propose the implementation of a Plugin that allows to write applications using
this contract-oriented paradigm.

This plugin re-implement a previous work of a centralized message oriented middle-
ware based on timed session types theory, that allows players to advertise contracts, �nd
a compliant other contract, initiate a session and �re actions into a running session; all
of these operations are monitored by the middleware.

As the centralized system, two external software applications are used: the �rst, Up-
paal, is a toolbox for modeling, simulation and veri�cation of real-time systems, based
on constraint-solving and on-the-�y techniques, developed jointly by Uppsala University
and Aalborg University. The Uppaal software allows to describe timed automata and to
execute query on di�erent characteristics of the automata. The second, Tibet, is a soft-
ware project of the Department of Mathematics and Computer Science of the University
of Cagliari, whose purpose is to translate contracts, expressed in abstract Ocaml syntax,
into UPPAAL's automata, in order to automate the compliance checking.

Since we are using timed session type, we need a way to achieve a global time unit
measurement shared between nodes; given that each block included in the block-chain is
stored at a certain height, the height value of the block that hosts the message is shared
identical between each node connected, and it can be exploited as a time unit measure.
This implies that a time unit has an average duration that depends on the average block
time of the speci�c block-chain used.

7.4.1 Messages

The plugin can handle 4 types of messages: every type of message is handled in di�erent
ways by the plugin software.

tell A tell message contains a contract advertised by a player. When a tell message
arrives in a node, the contract is checked for validity; then, it is inserted in the contracts
database table and its hash goes in the pending contracts database table. If the node
contains contracts told by its clients, the node checks if a compliant contract exists; if so,
the compliant contracts are associated with the new told contract.

fuse A fuse message composes two contracts in one session. When a fuse message
arrives, the node retrieves the two interested contracts and checks if they are compliant.
If so, a new session is stored in the database, contracts are removed from pending state
and a new session state is stored in the database. Unlike the centralized version, in this
system more than one fuse can appear in the block-chain for a given contract; if the fuse
messages are in a di�erent block, the oldest message is chosen. If they are in the same

37

block, the �rst fuse of the block is chosen as valid (the transactions in blocks have the
same order in all bitcoin nodes).

accept An accept message creates a session where a contract is composed with its dual.
This message is handled similarly to the fuse message.

do A do message contains a player action for a given session. When a do message
arrives, the node retrieves the associated session and updates the session state, detecting
if one of the involved players is violating its contract. The updated state is then saved in
the database.

7.4.2 Database

Every node with the TST plugin enabled, maintains a private database that holds the
system state; this includes all told contracts not expired or fused, the reputation value of
each player, all running and ended sessions with performed actions and current session
state. This information is updated only by new messages or by the time passing; this
implies that all the nodes in the same network have the same information in their private
databases.

7.4.3 API

The TST plugin implements speci�c TST APIs, divided in three classes; the �rst allows
the client to create a transaction that contains a TST message, the second allows to query
the system state and the third allows to perform operations on contracts:

Transaction creation

• tell (contract_xml, player_address, expire_block_delta): creates a tell message
• fuse (contract_a_hash, contract_b_hash, player_address): creates a fuse mes-
sage
• accept (contract_hash, player_address): creates an accept message
• do (session_hash, action, value, nonce, player_address): creates a do message

System state query

• listcontracts (type=all|pending|fused|ended): lists all contracts or a part of
them depending on their types
• listsenssions (type=all|running|ended): lists all sessions or a part of them de-
pending on their types
• getcontract (contract_hash): gets information about a single contract
• compliantwithcontract(contract_hash): returns a list of contracts that are compli-
ant with a given contract
• getsession (session_hash): gets information about a single session
• getaction (action_hash): gets information about a single action
• getplayerreputation (player_address): gets the reputation of a player

38

Contract operations
• validatecontract (contract_xml): returns true if the contract is valid
• dualcontract (contract_xml): returns the dual of a contract, if exists
• translatecontract (contract): translates a contract from raw to xml
• checkcontractscompliance (contract_a_xml, contract_b_xml): checks compliance
between two contracts

7.4.4 Client library

This plugin is also integrated in the prototype client library through ContractManager
module.

The ContractManager module is the core of the client library for TST and provides the
abstraction for a contract/session and related methods. The module should be initialized
with a valid ConsensusManager and a Wallet, and optionally a previously told contract.
After the initialization, the library can be used as the centralized version.

In contrast to the centralized middleware where the middleware server fuses compliant
contracts, in the decentralized system it is the client that must fuse the session with the
broadcasting of a fuse message: nevertheless this action is totally transparent for the
application and it is handled automatically by the library. When the contract appears
in the block-chain, the client library polls the node for a compliant contract: when a
compliant contract is found, the client library prepares and broadcasts the transaction for
the fuse.

The ContractManager main primitives are:
• tell: advertise a new client contract
• send: send a new client action to the current session
• receive: receive data from the current session

7.4.5 Example usage

Listing 10 shows a simple Hello world example where a player advertises a contract, waits
for a compliant, establishes a session and follows contract rules to do its job.

At lines 3-8 the ConsensusManager is created and initialized with a static set of nodes;
then, in lines 10-11, a Wallet object is created using a local instance of bitcoin-core with
private keys saved in the �le app.wallet. At line 13 the ContractManager for TST is
created using the ConsensusManager and Wallet objects created before. At line 15 the
contract of A !greet{;t}.?planet{t<7} is translated to an XML contract (with translate()),
then the contract is broadcasted to the node network.

At line 16 a blocking call to waitUntilTold waits until the contract of A is securely
stored in the block-chain. At line 17-18, the unique contract hash of A is displayed. At
line 20 a blocking call to waitUntilSessionStart waits until the contract of A is fused with
a compliant contract told by another player (say, B). At line 22, following the contract, A
sends a message with label greet with the value hello; this message also resets clock t. If B
is following the contract, B should receive the greet message and send back a message with

39

label planet to player A before the timer reaches 7 time units. At lines 24-28, if B follows
the contract, A will receive and print the planet message and the session ends; otherwise,
the B player becomes culpable and the session ends, raising the SessionEndedException.

1 from libcontractvm import *

2

3 consMan = ConsensusManager.ConsensusManager ()

4 consMan.addNode ("http://192.168.1.102:9095")

5 consMan.addNode ("http://192.168.1.105:9095")

6 consMan.addNode ("http://192.168.1.107:9095")

7 consMan.addNode ("http://192.168.1.109:9095")

8 consMan.addNode ("http://192.168.1.110:9095")

9

10 wallet = WalletNode.WalletNode (url="http://test:testpass@localhost:18332",

11 wallet_file="app.wallet")

12

13 contMan = ContractManager.ContractManager (consMan, wallet=wallet)

14

15 contMan.tell (contMan.translate ("!greet{;t}.?planet{t<7}"))

16 contMan.waitUntilTold ()

17 h = contMan.getHash ()

18 print ("Contract", cm1.getHash (), "told")

19

20 contMan.waitUntilSessionStart ()

21

22 contMan.send ("!greet", "hello")

23

24 try:

25 contMan.waitUntilReceive ()

26 print ('Hello', contMan.receive ()['planet'])

27 except (ContractException.SessionEndedException):

28 print ("The other player is culpable of violation")

Listing 10: Example usage of the client library for TST plugin

40

7.4.6 Contracts explorer

A graphical tool to explore the current state of the plugin has been developed using the
client library, exploiting query related API to retrieve information. The tool's primary
purpose was the debugging of the prototype, but it is also useful to check the state of
running contracts; the tool is divided in 3 main views: the �rst view shows a summary of
the system state, with the number of running sessions and pending contracts (Figure 7.1).
The second view shows detailed information about a contract (Figure 7.2); the last view
shows information about a session, including performed actions and session state (Figure
7.3).

Figure 7.1: Contracts explorer: system overview

Figure 7.2: Contracts explorer: single contract

41

Figure 7.3: Contracts explorer: single session with trace of performed actions

42

Chapter 8

Conclusions and future works

The goal of this Master's thesis was to design and develop a working prototype of a
decentralized block-chain based message oriented middleware and then implement the
timed session type contract model. The resulting prototype, however, is a more general
framework where a plugin system allows the implementation of di�erent coexisting de-
centralized applications.

The steps taken to achieve this goal were preceded by the study of the previous works
about decentralization and block-chain, of the contract model of timed session types and
of the existing implementation of the centralized contract-oriented middleware based on
timed session types, written by Livio Pompianu and Sebastian Podda.

Then, we explored di�erent existing software and libraries for writing decentralized
applications; the best choice at the moment of the thesis was to use the existing block-
chain of Bitcoin or one of its forks. After this, the design part started then coming to a
working python3 prototype. Following this, we developed four di�erent plugins for the
prototype; the most relevant is the TST case study 7.4 that exploits the timed session
types theory to create a working contract-oriented middleware.

8.1 Source code

All the produced software, including the node daemon with all case studies [13], the client
library [14] and the Kademlia DHT [15], are available as open-source projects on Github
[4], so every one can download the software, deploy a node or run client applications.

8.2 Related works

There are several works, in literature, related to that carried out in this thesis. In this sec-
tion we explore a list of some relevant decentralized software with their features and issues.

Bitcoin [19] is a decentralized peer-to-peer electronic cash system. Bitcoin proposes a
�nancial system where all transactions are stored in a public ledger, called block-chain;

43

the block-chain is updated with new blocks of transactions, using a distributed consensus
process called mining, that enforces a chronological order in the block-chain, protects the
neutrality of the network, and allows di�erent computers to agree on the state of the
system. To be con�rmed, transactions must be packed in a block that �ts cryptographic
rules, veri�ed by the network. These rules prevent previous blocks from being modi�ed
since a change would invalidate all following blocks. Mining also creates the equivalent of
a competitive lottery that prevents any individual from easily adding new blocks consecu-
tively in the block chain. This way, no one can control what is included in the block-chain,
or replace parts of the block chain to roll back their own spends.

Metadisk [20] is a decentralized cloud storage (similar to centralized services like
GoogleDrive [5] or Dropbox [1]) built on top of an existing bitcoin based block-chain.
In this system, users can rent their bandwidth and disk space to other users that need
cloud storage. As blockstore, metadisk uses the block-chain to store �les meta-data while
uses an external DHT for data storage. The main di�erence between metadisk and coun-
terparty, is that metadisk is designed as an end-user application for cloud storage, and it
does not implement the possibility of other usages.

CounterParty [18] is a decentralized application for creating peer-to-peer �nancial
products on the Bitcoin block-chain; its protocol is primarily designed to create virtual
assets and issue dividends. The CounterParty protocol de�nes a set of rules for embedding
messages inside block-chain transactions; it also de�nes a set of default message types used
to perform �nancial operations on assets (send assets, create dividends, publish order and
few others). counterpartyd was the �rst reference implementation of the protocol, and
consists in a python software that runs on top of the bitcoin-core node software; coun-
terpartyd nodes exchange data only using the bitcoin block-chain, and this is possible
because message are completely embedded in bitcoin transactions. Even if this seems
to be a good approach, two main criticisms arise about this technique: the �rst regards
the block-chain �ooding problem because each CounterParty message is downloaded by
each bitcoin node. The second regards the limit of the size of messages that could be
included in the block-chain; even if the limit is increased using some block-chain tricks
(message data is encrypted in multi-signature transaction despite this is not the goal of a
multi-signature transaction), the limit is still too low for many applications.

8.3 Future works

There are many other improvements that are necessary for a production usage of this
software and many other ways to do things that need to be explored.

The �rst improvement to the existing prototype, is to write a more versatile client
library; it can be rewritten in a more low level language (like e.g. C++ or C) in the aim
to make it usable from di�erent environments (using for example SWIG [7], a software
development tool that connects programs written in C and C++ with a variety of high-
level programming languages).

44

In our system, users are not encouraged to deploy and run a node; the incentive is
necessary because a node o�ers processing, storage and network resources. A possible
solutions is to o�er a reward for data storage using an approach similar to the one used in
Metadisk [20] where a decentralized algorithm checks how many messages are stored in a
node, and the system pays it for these resources. Another possibility is to give a reward
to a node for each broadcasted message, taking a part of the fees.

To avoid the need of a running instance of bitcoin-core, the prototype could imple-
ment the bitcoin protocol part related to the block retrieval. With this modi�cation, all
transaction data that do not belong to plugin messages will not be stored in the node
machine. A node bootstrapping mechanism is also necessary for the automation of node
probing both for node and client library.

Another useful future work is the implementation of a package manager for installing
and updating available plugins.

A possible future research work is to re-implement the timed session types plugin
with an Ethereum dapp; the challenging part of this new approach is to implement the
model checker and the execution monitor using one of the Ethereum language. Another
challenge is to write a small dapp, because to run a software in the Ethereum network you
should pay a fee for each process depending on the number of operations performed. The
�rst advantage of this approach is that nodes should not install a third party software,
but they only need the Ethereum o�cial client; the second advantage is that the reward
for nodes is already integrated in the Ethereum mining process. After the deploy on the
network, the dapp will stay alive until users continue to use it.

45

List of Figures

2.1 Semantics of timed session types (symmetric rules omitted). 8
2.2 Kind system for TSTs. 10
2.3 Monitoring semantics (symmetric rules omitted). 12

3.1 Data model with DHT and Block-chain . 18
3.2 Format of OPRETURN message meta-data 18

4.1 Example node network with clients connected 19
4.2 Node software modules . 20
4.3 Client - Node message �ow . 21

5.1 Client library modules with TST module (ContractManager) 23
5.2 Example where a client is connected with 3 nodes; one of them sends wrong

data . 24

7.1 Contracts explorer: system overview . 41
7.2 Contracts explorer: single contract . 41
7.3 Contracts explorer: single session with trace of performed actions 42

47

List of listings

1 HelloWorld plugin source code: Messages 30
2 HelloWorld plugin source code: VM . 31
3 HelloWorld plugin source code: API . 31
4 HelloWorld plugin source code: Plugin . 32
5 HelloWorld plugin library source code . 32
6 Example usage of the client library for HelloWorld plugin 33
7 Example usage of the client library for BlockStore plugin 34
8 Example usage of the client library for FIFO plugin: message producer . . 35
9 Example usage of the client library for FIFO plugin: message consumer . . 36
10 Example usage of the client library for TST plugin 40

49

Bibliography

[1] Dropbox. https://dropbox.com.

[2] bittorrent. http://www.bittorrent.com.

[3] emule. http://www.emule-project.net.

[4] Github. https://github.com.

[5] Google drive. https://drive.google.com.

[6] Rabbitmq. https://www.rabbitmq.com.

[7] Swig. http://www.swig.org.

[8] Namecoin: a decentralized dns service. https://wiki.namecoin.org/, 2011.

[9] Blockstore: Key-value store for name registration and data storage on the bitcoin
blockchain. https://github.com/blockstack/blockstore, 2014.

[10] Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia, Alessandro Sebastian Podda,
and Livio Pompianu. Compliance and subtyping in timed session types. In FORTE
2015, pages 161�177, 2015. doi: 10.1007/978-3-319-19195-9_11.

[11] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In ACPN, pages 87�124, 2003. doi: 10.1007/978-3-540-27755-2_3.

[12] Vitalik Buterin. Ethereum: a next generation smart contract and decentralized appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper, 2013.

[13] Davide Gessa. Contractvm daemon source code. https://github.com/contractvm/
contractvmd, .

[14] Davide Gessa. Contractvm library source code. https://github.com/contractvm/
libcontractvm, .

[15] Davide Gessa. Kad.py kademlia dht source code. https://github.com/

contractvm/kad.py, .

[16] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. Inf. Comput., 111(2):193�244, 1994.

[17] Kevin Ho�man, David Zage, and Cristina Nita-Rotaru. A survey of attack and
defense techniques for reputation systems. ACM Computing Surveys (CSUR), 42(1):
1, 2009.

51

https://dropbox.com
http://www.bittorrent.com
http://www.emule-project.net
https://github.com
https://drive.google.com
https://www.rabbitmq.com
http://www.swig.org
https://wiki.namecoin.org/
https://github.com/blockstack/blockstore
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/contractvm/contractvmd
https://github.com/contractvm/contractvmd
https://github.com/contractvm/libcontractvm
https://github.com/contractvm/libcontractvm
https://github.com/contractvm/kad.py
https://github.com/contractvm/kad.py

[18] Ouziel Slama Robby Dermody, Adam Krellenstein and Evan Wagner. Coun-
terparty: Protocol speci�cation. http://counterparty.io/docs/protocol_

specification/, 2014.

[19] Nakamoto Satoshi. Bitcoin: a peer-to-peer electronic cash system. https://

bitcoin.org/bitcoin.pdf, 2008.

[20] Jim Lowry Shawn Wilkinson and Tome Boshevski. Metadisk: a blockchain-based
decentralized �le storage application. http://metadisk.org/metadisk.pdf, 2014.

52

http://counterparty.io/docs/protocol_specification/
http://counterparty.io/docs/protocol_specification/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://metadisk.org/metadisk.pdf

	Contents
	Introduction
	Decentralized Applications
	Contributions
	Structure of the thesis

	Background
	Contracts and timed session types
	Overview on contracts
	Timed Session Types
	Semantics of Timed Session Types
	Dual construction
	Runtime monitoring

	General-purpose decentralized system
	Extending the bitcoin block-chain
	Distributed Hash Table
	Message meta-data

	Decentralized system
	Chain and DHT modules
	PluginManager and Plugins modules
	API module

	Client library
	ConsensusManager module
	Reputation system

	Wallet module

	Attack scenery
	Malicious system
	System broadcasts modified data
	System deletes data received from clients
	System sends wrong data to clients

	Unreachable system

	Case study plugins
	Hello World plugin
	Plugin source code walk-through
	Example usage

	BlockStore plugin
	Example usage

	FIFO message queue plugin
	Example usage

	Timed Session Types plugin
	Messages
	Database
	API
	Client library
	Example usage
	Contracts explorer

	Conclusions and future works
	Source code
	Related works
	Future works

	List of Figures
	List of Listings
	Bibliography

